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THE QFT SCATTERING RESONANCES CANNOT BE
ASSOCIATED WITH THE VON NEUMANN — WIGNER
BOUND STATES IN A CONTINUOUS SPECTRUM

L.G.Zastavenko

This work is our response to recent attempts to connect the observed
resonances ing.g., an electron-positron system,with the von Neumann — Wigner
bound states in a continuous spectrum. Such states can exist only if the potential
is not absolutely integrable. We study the Schroedinger equation (—A +

+ V() - k2)1p = 0, where the potential ¥(r) is not absolutely integrable:

[ ]

~ Py d
J 1V(n)1dr = = and the Fourier image V(1) = [ e'®*v(r)d 3 has singutari-
0
ties for real valuesof 1g !, 17| = !5:.1 > 0. We consider the perturbation theory

expansion A(p, EO) = A+ Ay+ ... of the scattering amplitude. Our (trivial)
result is that singularities of the function v(q) give rise to singularities of quantities
A Ay, ... - But the QFT ({quasi) potentials do not give any singula-rities of the
Born amplitude Al. Thus, our statement is that the computed by Arbuzov et al.

and Spence and Vary resonances cannot be connected with the von Neumann —

‘Wigner bound states.
The investigation has been performed at the Laboratory of Theoretical

Physics, JINR.

Yposuu (pon Heitmana — Burnepa u pe3oHAHCHBE COCTOSHUSE
CHCTEM JIEKTPOH-TIO3MTPOH, MPOTOH-IIPOTOH

JI.I''3acrasenko

Pa60’l‘a SABJILICTCAa OTKJIMKOM HA HCAABHME NOMBITKU CBA3ATH PC3OHAHCH! B
CHUCTEME DNEKTPOH-MO3UTPOH CO CBS3aHHBIMM COCTOSHMSMM B HENPEPHIBHOM
cnektpe (don Heiiman — Burnep). Takue COCTOSIHMS CYIECTBYIOT TOJILKO,

*® o~ R .l
ecau f I V(r) Idr = o . Torna dypre-obpas V( 1g!) = _f d 3xV(r)e 9% ymeer
0
CUHTYJIAPHOCTH TIpH 171 > 0. Mst paccMarpuMBaeM 3ajzauvy paccesiHus Ans
ypasHenuii HIpeaunrepa. Ilycre pag teopuu BO3MywmeHwis A(E: Fo) =

= Al([)', 1'1'0) + AZ(I)', 1_)’0) + ... 3apaer aMrumtyny paccesums. Ilpu Hamem
MOTEHIHAJIE BEJIMUMHDI AI’AZ’ +v. — CHHTYJSpHBL. HO K8a3UMOTEHLMANbI
KTII paroT HECHHIYISpHbIE BEJTMUHHDI Al’ A2, ... . IHoaromy g RyMaio, 4t0

BhIuMCIIeHHbIE ApOy30BbIM U Ap. ¥ CnieHcom v Bapu pe3oHAHCHI HE CBA3AHbI C
pewiennsamu ¢hon Heitmana — Burhepa.
Pabora Bbimonuena s Jlabopatopun teopetnueckoit pusuxkn OUSIN.



I. Introduction

Since the work/ 7" it became almost common knowledge that the
Schroedinger equation

d? 2 1.D
— L sV —-kHy=0
( PP ) )X

with the potential

24

V() = - sin (2pr) (1.2

at k2= p2 has the solution which vanishes as r tends to infinity:
w(r)=>0 as r—> oo, (1.3)

Introducing into the potential some additional degree of freedom, e.g.,
taking V(r) = (24/r) sin (2pr + 8), one can ensure fulfillment of the
boundary condition

¥(0) = 0. (1.4

We shall call solutions of the Schroedinger equation which satisfy both
boundary conditions (1.3) and (1.4), the bound states in a continuous
spectrum 1/ (Note that two independent solutions of eq.(1.1), (1.2) at

k%= p 2 can be represented as

et + oo
b= 3 5 g

n=0 s=-o

where A = A/(2p) and D, are numerical coefficients to be determined

from eq.(1.1)).

Recently there were observed some unexpected resonances in a
system of charged particles/ -6/,

Some authors tried to interpret these resonances in terms of the
von Neumann — Winger bound states in a continuous spectrum 7.8/
These theoretical works are mainly computational. Spence and Vary, in
particular, considered the scattering phase J(k) of the electron-position
system.

Space and Vary insist that their computations give

liII(l) [5(k0 +¢€) — d(k0 —&)]l=n (1.5
z>0

for some values of momentum k0'
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1. This result is the starting point of our consideration. We state:
) If the Fourier image of the potential V( 171) = [ e XV(rd 3x is

- -]
singular at some point 1g) =2p and [ IV(r)idr=, IV(r)]l <M<
0
< o, then the Schroedinger equation (1.1) has, at k2= pz, a solution
y which does satisfy boundary condition (1.3).

2) For such potential the first order perturbation theory scattering
amplitude is singular at the point k? =p2.

3) The QFT quasipotentials of works’’’ and’¥ do not give any
singularities of the scattering amplitude in lowest orders of the
perturbation theory. Thus, we think that attempts to connect the
computed resonances’ "’ with the von Neumann — Winger bound states
in a continuous spectrum are hopeless.

1.1. We will give also the following verbal description of the von
Neumann — Winger phenomenon of bound states in a continuos
sprectrum. At k=p there arise a resonance of oscillations with
frequencies *+k and 2p in our Schroedinger equation (1.1), (1.2): The
oscillations with frequency 2p induce transition between the states which
possess frequencies *k (see also Appendix). This resonance does not
allow a particle, if it is located somewhere in the region r~1, to
penetrate into the region r >> 1. And vice versa, if a particle is located
in the region r>>1, it cannot ponetrate into the region r~ 1. Our
potential (1.2), however small the value of the parameter A is, forms
the resonance barrier, which is the more difficult to ponetrate, the

smaller is the quantity |k 2 p 2| and which a particle cannot penetrate
into if k2=p2.
1.2. The potential (1.2) gives discontinuity in the energy dependence

of the S-wave scattering phase (sce €q.(2.7)). Let us construct the Jost
solution ¥, (r) for the potential (1.2) (see eq.(A.1)). The point

k2= p2 is a branching point for this solution (see Appendix A).
1.3. Appendix B contains consideration of singularitiecs of the
. - ~>
amplitude A,(p, py)-

Il. Scattering on a Singular Potential

1. Let us consider the scattering problem for a Schroedinger equation
in the momentum space:
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2= kDeE) + [ vE, Dwi)d3 =0, Q2.1

AP Py -, 2.2)

Y(P) = 67 - by YT P =7

- 7> dsl >
AP, B ==V, P — Vo) g V) — =

> > 2.3
= APy + AP, By) + . (2.3)

Here A(p, pp) is the scattering amplitude.
2. Let us take at first a local potential

- > ~ 5 =
Vip,1)=V(p—1). 2.4)

2.1. Even if the potential V(r) in equation (1.1) is absolutely
mtegrable, its Fourier image V/( Iq ) as a function of the variable
Ig ) =g can be nonanalytical at some points ¢ = p IIm q:' =0 (see

Appendix B). Suppose, however, that this function is analytical along
all the axis g = 0. Then, the scattering amplitude (2.3) is also an
analytical function of the momenta p, 13:), Ipl = |1_):) | =k, regular and
bounded for real values of these momenta.

2.1.1. The potential V(¢) may have singularities in the complex plane,
g=gq, i= 1,2,3,... Im q;# 0. Even if the potential is real, these

singularities are capable to cause characteristic peculiarities of parts
A, A, and so on of the scattering amplitude. Let us take, e.g.,

47A £ 2.5
7 2+ @-2p7

V(g) =

where le/p |l << 1.

One has
~ 4r2A 2.6)
V(a) > 5,5 8(a — 20)

as € = 0. Such a characteristic behaviour of the quantity i;(q) leads to
observable consequences.

2.2. The absolutely nonintegrable potential (1.2) corresponds to the
limit € = 0 in eq.(2.6). For this potential the Born approximation gives
no scattering at all if 1p| = If):)l = k < p and gives scattering only on
the cone Ip— [):)I =2 if Ipl = I[)’OI = k > p. The Born approximation

s-wave scattering phase for the potential (1.2) is:
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2 2
(k) = 0, k“<p

w4, k¥>p? @7

Thus, the potential (1.2) gives the rupture of the scattering phase.
In general, if the quantity V(q) has a singularity at ¢ = 2p, then the
Born approximation s-wave scattering phase has a singularity at k = p.
2.3. Let us now discuss the quasipotential equation of the work by
Arbuzov et al.””’. It can be written down essentially as

[20@) — 2wk) W) +A [ V@, Dyp)d 3 =, 2.8)

> > > 5, = _ —> - _
Ve, 1) = lw@o) 1IF- 111" Plo@) + o) + 15- 11 -~ 20)17 !,
here the potential does depend on the center of mass energy 2w(k) of

the system w(k) = (m 24k 2)1/ 2 symbol P denotes a principal value_(in
the work "/ the authors use complex denominator w(p) + w(l) +
+1p=11- 2w(k) — ie. This prescription seems to us to be obviously
wrong, for it leads to the energy nonconservation in the process of
scattering, see, e.g., eq. (2.3). This remark does not influence the
computational results of work’” as they use the approximation
neglecting the imaginary part of the potential). Then, one has

A\F, By = ho()~ 27— B 72 (2.9)

Here Ip 1 = | [):)I =k is the energy conservation law. Equation (2.9)

exhibits no singularities in its dependence on the parameter £ along the
real axis. The quantity (2.9) is not capable of describing any resonances
of the scattering cross-section. Let us now consider the s-wave part of
the quantity AZ(F, 5:)). It is easy to prove that this function also has no

singularities on the real % axis.

2.3.1. Thus, we have to state about the results of the works/ 7 and/ 8{ :
these results have nothing to do with the von Neumann and Wiegner
bound states in a continuous spectrum. The latter cause singularities of
the scattering amplitude which can be observed, €.g., in the Born
approximation whereas Arbusov et al. claim their levels to be essentially
nonperturbative.
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Appendix A

Jost Solution of Eq.(1.1), (1.2)

Let us denote y,(r) the Jost solution of eq.(1.1), (1.2), as determined
by the condition

¥ () ~ e as r > o. (A.D
One has
to (A.2)
v =3 CPIB (),
§=—00
dB. d’B

§

2ps 2(k + ps)B_ - 2i(k + 2ps) d—r‘ 3= iAB,_, — B, l)/r.(A N

It follows from eq.(A.1) that
B(r)>0 asr>, s#0
By(r)=>1 asr—> . (A.4)

When le | << Ip |, ¢ =k — p, equations (A.3) reduce to the system of
two coupled equations for functions By(r) and B_,(r). One gets

-]

T(m + A)T(m — A)

B (r) = .
o) m}=:o mIC(A(—A) (2ier)™ (A.5)
Barnes integral representation/ o/ enables one to prove formula
By(r) = a(A) Qier)* + a(=A) (2ier)™* (A.6)

. 1 . . .
if l<<r<< Te T Standard sewing procedure gives representation

Y () = a(A, ey () + a(—=A, e)y_(r) (A.D
of the Jost solution if e I <<1. One has a(A, ¢) ~ ™: it looks like the

point k2= p2 is the branching point of the Jost solution.
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Appendix B

Here we shall point out that if potential V(r) contains part d¥(r) =
~ sin (2pr + 8)f (r), where [ (r) ~ r~® as r- o, its Fourier image

'17(q) has singularity at ¢ =2p, and the Born approximation S-phase
d(k) has singularity at k£ = p.

Note Added in Proof

The QFT quasipotential approach gives the s-wave Schroedinger
equation of the type

2 N.1
(=5 = W) + Ve wirdr =0, -

where  V(rr') = O (exp(—mVr2 + r'2 )) as r—> o . Let us consider
the  Schroedinger equation (N.1) with saparable potential
V(r,r) =1e "*7). The corresponding eq. (N.1) for k%= kg has

solution Yo(r) = e”"; here the value is determined by the equation

2 (N.2)
A+ =2fe¥ar.
0

Of course, our solution Yo(r) does not satisfy condition (1.4).

Nevertheless, this example shows, in principle, that the Schroedinger
equation (N.1) with nonlocal potential is capable to have bound states
in continuons spectrum (i.e. it can have for some values of k2,
P> 0, solutions, which satisfy both boundary conditions (1.3) and
(1.4)). This general fact explains calculations of works’’’ and 8 These
AShBS bound states resemble, to some extent, the von Neuman —
Wigner bound states, but, unlike these states, their descent is connected
with the non-locality of the potential.

Let us consider the solution y(r, k) of our equation (N.1) which is
determined by the boundary equation (1.4) and by the condition

Ly )], _ o= 1. One has y(r, k) = 1A®K)! sin (kr + (k) as r > e.
One has also
Alkg) =0 (N.3)
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if y(r, ky) >0 as r-> . Equation (N.3) ensures fulfillment of the

condition (1.5) and thus explains the Spence — Vary phenomenon of
the scattering phase discontinuity at the energy of the bound state in
continuous spectrum

Note also, that eq. (N.2) shows that no bound state (in continuous
spectrum) exist if A - 0. This observation explains the nonperturbativ
character of the AShBS bound states’ "%,

The expression

w0 2i8 (k) _

o= 3 9—%@——‘ p, (cos 6)
of the scattering amplitude shows that the Spence — Vary =«
discontinuity of the scattering phase cannot be observed. Now, in order
to accept or reject the AShBS conjecture conserning the connection be-
tween the observed resonanses and bound states in continuous spectrum,
one has to investigate the analytical behaviour of the function d(k) in

a vicinity of the point K= k(2). If this function is analytical (except for
7 discontinuity at the point K = k(z)), the AShBS conjecture is probably

wrong.
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